El trifosfato de adenosina fue aislado por primera vez del músculo en 1929 en los Estados Unidos por Cyrus H. Fiske y Yellapragada Subba Row, e independientemente, en Alemania por Karl Lohman. No fue, sin embargo, hasta diez años mas tarde que empezó a reconocerse el papel central del ATP en la transferencia de energía. En 1941, Fritz Lipmann (Premio Nobel,1953) ayudado por las contribuciones de Herman Kalckar, apuntó la hipótesis de la naturaleza cíclica del papel del ATP en los procesos bioenergéticos escribiendo: No se pueden dar respuestas definidas a la pregunta de cómo opera el alto potencial del grupo fosfato como promotor de varios procesos si bien se puede reconocer una interconexión más o menos estrecha con el recambio del fosfato...el ciclo metabólico(es) comparable a una máquina que genera corriente eléctrica.Parece, de hecho, que en la organización celular la<<corriente>> de fosfato juega un papel similar al de corriente eléctrica en la vida de los seres humanos. Es también una forma de energia utilizada para todos los fines.[1]
ATP
Las reacciones endergónicas se manifiestan durante los procesos anabólicos que requieren energía para convertir los reactivos (sustratos o combustibles metabólicos) en productos. Por otro lado, durante las reacciones exergónicas se libera energía como resultado de los procesos químicos (ejemplo: el catabolismo de macromoléculas). La energía libre en un estado organizado ( en forma de ATP), disponible para trabajo biológico útil. Las reacciones endergónicas se llevan a cabo con la energía liberada por las reacciones exergónicas. Las reacciones exergónicas pueden estar acopladas con reacciones endergónicas. Reacciones de oxidación-reducción (redox) son ejemplos de reacciones exergónicas y endergónicas acopladas.Los organismos pluricelulares del Reino Animal se alimentan principalmente de metabolitos complejos (proteínas, lípidos, glúcidos) que se degradan a lo largo del tracto intestinal, de modo que a las células llegan metabolitos menos complejos que los ingeridos, por ejemplo vía la oxidación a través de reacciones químicas degradativas (catabolismo). Los metabolitos simples y la energía obtenida en este proceso (retenida en su mayoría en el ATP) conforman los elementos precursores para la síntesis de los componentes celulares. A todo el conjunto de reacciones de síntesis se llama anabolismo.
Además, en el catabolismo (oxidación) se produce una liberación de electrones que son captados por moléculas transportadoras de electrones como el NAD+ (que al aceptar electrones se reduce a NADH).
Recapitulando, la síntesis (anabolismo) de los compuestos celulares se realiza con los metabolitos simples, utilizando la energía contenida en el ATP y los electrones contenidos en el NAD, siendo un proceso reductivo (reducción de electrones). Podría decirse que el ATP es la moneda de intercambio energético debido a su estructura química. Cuando se hidroliza libera mucha energía que es captada por las enzimas que catalizan las reacciones de biosíntesis.
Hidrólisis del ATP
Molécula de ATP y su hidrólisis a ADP + Pi:
Se puede representar así: A-P~P~P
Donde °¬°°~° son los enlaces anhídrido de ácido, que son de alta energía. En la hidrólisis del ATP se está hidrolizando uno de esos enlaces anhídrido de ácido. Esto libera gran energía, concretamente 7,7 kcal/mol. Es decir:
- ΔG = -7,7 kcal/mol o lo que es lo mismo, aproximadamente - 31 KJ/mol
Así se comprende que el ATP tiene tendencia a hidrolizarse de forma natural y liberar energía.
Razones químicas de la tendencia a la hidrólisis del ATP
Las razones químicas de esa tendencia son tres:- Energía de estabilización por resonancia: viene dada por la deslocalización electrónica, es decir, que debido a la distinta electronegatividad entre el P y el O, existe un desplazamiento de los electrones de los dobles enlaces hacia el O. En el enlace doble tienen cierto carácter de sencillo y viceversa.
Pues bien, la energía de estabilización por resonancia es más alta en los productos de hidrólisis que en el ATP. Esto se debe fundamentalmente a que los electrones π (los puntos rojos en los O) de los oxígenos puente entre los P son fuertemente atraídos por los grupos fosfóricos.
La competencia por los electrones π crea una tensión en la molécula; ésta es evidentemente menor (o está ausente) en los productos de hidrólisis. Por lo tanto, hay mayor energía de estabilización por resonancia en los productos de hidrólisis. - Tensión eléctrica entre las cargas negativas vecinas existente en el ATP (las flechas entre los O de los Pi). Esa tensión es evidentemente menor en los productos de hidrólisis.
- Solvatación: la tendencia natural es hacia una mayor solvatación. La energía de solvatación es mayor en los productos de hidrólisis que en el ATP.
Una de las más importantes funciones del ATP es que almacena en los enlaces de alta energía que unen los grupos fosfato gran cantidad de energía para las funciones biológicas y se liberan cuando uno o dos de los fosfatos se separan de las moléculas de ATP.
No hay comentarios:
Publicar un comentario